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spondingly larger. The analysis was done with
v=0.638 and v=0.625. Results are shown in Table
II. OZ values for the two moments shown are
7.425 and 10.929.

If v=0.638, then these results are consistent

FERER, MOORE, AND WORTIS 3

with universality. If v=0.625 (n=0), then our ex-
trapolations are in suggestive agreement with OZ,
The close connection between v and the moment-
ratio extrapolants precludes resolution of this am-
biguity.
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A model band structure due to Rice which exhibits a “cusp” Kohn singularity has been

used to evaluate the dynamic susceptibility of nearly itinerant antiferromagnets.

The spin-

fluctuation dispersion relation is derived for such systems, and it is shown that the contri~
bution of the spin fluctuations to the electronic specifi¢c heat contains anomalous terms in

contrast with the calculations of Moriya.

I. INTRODUCTION

The behavior of spin fluctuations in nearly ferro-
magnetic metals and alloys has been the subject of
many recent research papers. ! However, spin
fluctuations in nearly antiferromagnetic metals and

alloys have received little attention. There are two
reasons for this situation: (i) The only itinerant
antiferromagnets that have been thoroughly investi-
gated experimentally are pure Cr and its alloys.

(ii) The band structure of Cr is essential for an un-
derstanding of the nature of the antiferromagnetic
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ground state which is a longitudinal-linear -spin-
density-wave state (LSDW) at low temperatures. 2
Since the band structure is complicated, it has been
replaced by a variety of simple models for calcula-
tion purposes. For example, Sinha, Liu, Muhle-
stein, and Wakabayashi® have used a one-band para-
bolic model to calculate the dynamic susceptibility
of Cr and obtained the following form for dynamic
susceptibility:

x(q, w)=x(q, w1 -vx®(q, w)]?, (1)

in the random-phase approximation (RPA). V is
the strength of the exchange interaction between
conduction electrons. The tendency to antiferro-
magnetism results from the nesting of the Fermi
surface into itself with wave vector @= 2k, where
ky is the Fermi momentum In the limit of low fre-
quency and small lq Ql the dynamic susceptibility
“”(q, w) for the noninteracting system is given by

Rex(q, w)= X" (2kp, 0) —a¥(w?+VE1G-QI2) ,

Imx'¥(q, w)=bw, @)
where a and b are constants which depend on the
temperature T assumed greater than the Néel tem-
perature. Sinha et al.® were able to fit x( a, w) given
by (1) and (2) to magnetic neutron scattering data
for Cr at temperatures greater than the Néel tem-
perature Ty. The peaks in X( E, w) as a function of
61. near Q indicate the presence of large-amplitude
spin fluctuations in this temperature region. A
similar one-band model is under investigation by
Héritier and Lederer? to explain the giant electron-
ic specific heat of B,Cr,V,_, in terms of spin fluc-
tuations in nearly antiferromagnetic alloys.

II. TWO-BAND MODELS

Other models have attempted to take into account
the detailed band structure of Cr. The LSDW in
chromium is formed by the nesting of two similar
portions of the Fermi surface separated by a vector
Q which is close to half a reciprocal-lattice vector.
One of these surfaces is a hole octahedron centered
at the point H in the Brillouin zone of bcc Cr, and
the other is the flat part of the “electron jack” cen-
tered at I'.* In consequence, the one-band model
must be replaced by a two-band model which at-
tempts to simulate the real Fermi surface of Cr.

The first such model is due to Fedders and Mar-
tin,® who proposed that the true Fermi surface of Cr
be replaced by two equal spheres (one-hole sphere
and one-electron sphere) separated by a vector Qo
=3 K,, where K,is a reciprocal-lattice vector. The
LSDW ground state is stabilized by the formation
of bound interband particle-hole pairs. In the para-
magnetic state the intraband suscept1b111ty defined
in (1) must now be replaced for q near QO by an in-
terband susceptibility given by
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X12(q, @) =x3P(q, W)[1-VxiP(q, @] 3

where V is an interband exchange interaction and
(0)

X9 (q, w) is defined by
(2 (1)
(0) f(em) flex)
Xi2(q, w)= ? €D e ’+i6 ) (4)

where f(€) is the Fermi distribution function, €%

is the dispersion relation of the electron band cor-
responding to the “hole” surface, and €'’ is that
corresponding to the electron surface. xig’ in (4)

has been evaluated by Rice et al.” for zero frequency
and momenta E[ close to 60 using the Fedders-Martin
model and is given by

Xi9(d, 0)=In(2kp /13- Q) , (5)

at zero temperature. The expression for X;,(d, 0)
obtained from (3) and (5) shows that a stable spin-
density-wave ground state exists for all nonzero
values of the interband coupling constant V. This
is clearly incorrect. Apart from this deficiency,
the Fedders-Martin model gives a good qualitative
picture of the behavior of a two-band itinerant anti-
ferromagnet. ?

Recently, Moriya® has proposed that spin fluctua-
tions innearly antiferromagnetic metals do not con-
tribute anomalous terms to the electronic specific
heat C,(T) contrary to the case of nearly ferromag-
netic metals.! His work is based on a one-band
model where the dynamic susceptibility is given in
the RPA by Eq. (1). On general grounds he shows
that the zero-temperature dynamic susceptibility

(o’(q, w) in the absence of interactions is glven 1n
the limit of low frequency and small momenta q Q
by

Rexo(d, ©)=X(Q)[1 -a(Q)(d-Q)*
-5(Q, 4 -Quw+---],
Im a, w)= Xo(é)[c(—é, a - -Q.)w
+d(Q, 4- Qw4+ ] .
The absence of anomalous effects in C,(7) is as-
cribed to the fact that ¢(Q, q - Q) stays finite as
a - é However, the validity of the expansion in
(6) depends critically on the band structure of the
metal in question.

Rice!® has proposed that the band structure of Cr
group metals exhibits a logarithmic Kohn anomaly
which results in a “cusp” singularity in xi9(q, 0)
when q Q He was able to explain the pressure de-
pendence of the Néel temperature using such a
“cusp” model. In Sec. III, the dynamic suscep-
tibility for a two-band model with a “cusp ” Kohn
singularity is derived. It is shown that Moriya’s
expansion (6) is not valid for this model and that,

in consequence, the electronic specific heat may
exhibit anomalous terms.

(6)



3916 M. J.
3k
«
Ao
2+
‘ -
1 L 1 1 s 1 1 1
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8
q
FIG. 1. Dispersion relation of the spin fluctuations

in the limit |¢’| > w,

III. SPIN FLUCTUATIONS FOR “CUSP”-TYPE
KOHN SINGULARITY

The interband susceptibility x{>'(q, w) defined in
(4) can be written as follows for a general band
structure®®:

Q)

where N, (£, 1) is the double density of states given

by
N (&, m)=22,0[€ -5 (52, - ) ][ -5 (€42 +e5)] .
(8)

Rice® has derived N,(¢, 1) for a two-band model with
the following band structure:

(2 LI
€0 0= Vek,+. -
ReQTIFEE T 2m,  2my,

©)
ke Ry

(1)
€ ==-Vpk,+ - .
k PR 2m, ~ 2m,

The resulting expression for N,(£, 1) exhibits a
logarithmic Kohn anomaly:

1/2,.1/2
Nq(gy T7)=v01n<n—_nl;7> sy Vo= 7!]’5‘_4%,;'1—_ (10)

where ¢’ = V(4 - Q), and 7, isthe energy cutoff in
the k, -k, plane. From (7) and (10) the imaginary
part of x19(q, w) is given by

oy L) q’
ImX;,’(q, w)= 5 <¢.o(1n'l70 -1)+ 5 In

w-q'’
w+q'’

_an

22 ).
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It follows directly from Rice’s work® that Rex{3(q, w)

in the low-frequency small ¢’ limit is written as
Rex{3(d, @)=v(Ag-57%|q’|)+0(? ¢"%, (12)
where A, is given by
Ag=2n9[2+1In(wy/7g)] . (13)

wy is the energy cutoff in the k, direction. Equation
(12) shows that x{3(q, 0) exhibits a “cusp” at ¢’=0
or ¢=Q. The limiting forms of Imx{3(q, w) are
given by

mx{3 (q, ©)

swemw [In(2ny /w) =11, w>»|g’| (142)

F(wemMwin(n,/0.27|q '), w<|q’| . (14b)

It is important to note that i3’ as given in (12) and

(14) for a “cusp” Kohn singularity cannot be ex-
panded in the form (6) due to Moriya.® This has
important consequences on the specific heat C,(7)
(see betow).

The spin-fluctuation spectrum w, is given by the
poles of the full interband susceptibility X;( a, w)
defined in (3):

1= VX2(q, w,-) . (15)

Equations (12), (14), and (15) give the following ex-
pression for w,. in the limit | ¢’ > w:

21 - n
L=y (1 - — "o

W= 7 (1 VvoV)]n(O. 27|q,|> . (16)
In nondimensional units w,. becomes (see Fig. 1)

w,=x i\ In(1/|7’]), (17)
where

w=0.270/1,, q'=0.27q"'/7,, (18)
and

Ag=2. 2[2+1n(w, /o) | k& / (1 —kE) . (19)
kg is the inverse of the enhancement factor given by

KE=1-v,A,V . (20)

Clearly, k<0 for an itinerant antiferromagnetic,
and k220 for a nearly antiferromagnetic itinerant
metal. The imaginary part of X;,(q, @) correspond-
ing to (17) is given from (12), (14), and (15) by

Wy, win(1/1¢g"1)
0.27 (A+3 717 12+@%I(1/ 17" 1) °
(21)
Imy;,(g, @) has a pronounced peak as a function of
@ when k22 1 which should be observable by neutron
scattering.
In the limit 1q'| < w, the spin-fluctuation spec-
trum is obtained from (12), (14a), and (15). The
dispersion relation is then given by

2
o o) ).
q’ 0

Imx;o(q, @)=
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Expansion in powers of ¢’ gives

wer =xi(a+Blq’]), (23)

where
- 2§
a=—= ,
Vyer[In(2n o/ %) - 1]

B= - ;
“2[In(2ny/Q9 - 1]’

(24)
2, is the frequency of the zero-momentum spin
fluctuation. Equation (23) shows that the spin fluc-
tuations in nearly antiferromagnetic metals with a
“cusp” Kohn singularity in the band structure have
a phononlike dispersion relation similar to that of
nearly ferromagnetic metals.! It is important to
note that 24— 0 as k2~ 0 [see Eq. (22)].

Recently, Jerome!® extended the work of Moriya®
to a two-band model with a spherical electron Fermi
surface and an ellipsoidal hole Fermi surface.
Moriya’s expansion of y(d, w) in (6) is valid for
Jerome’s band structure and gives the following dis-
persion relation for the spin fluctuations:

(25)

The different character of the dispersion relations
given by Egs. (23) and (25), respectively, indicates
the importance of band-structure details in the cal-
culation of the dynamic susceptibility. Moriya® has
shown that the dominant contribution of the spin
fluctuations to the free energy is given by

3 ® w
AF:E L?[ dwcoth(—z—kT>

xtan™ 1 ( Vlmx(&)(q, Cl.))

o . (26
1- VRex2(q, w)) (26)
The most important contribution to A F at low tem-
peratures comes from the form of Imy‘3(q, ) in
the limit w> ¢’ |, This contribution is obtained

from (12), (14a), and (26):

v [ ,'/""c w
AF:Z—Tr -[0 dq i dwcoth(ZkT>

X( w{In(27 o/ w) ~ 1])

2. 15 2 7
Ko+aVT Vg

whi=xila" +8" 4" ).

(27)

Integration of the right-hand side of (27) and differ-

entiation with respect to T gives the following anom-
alous terms in the electronic specific heat (see also
Ref. 4):
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CS¥(T) ~ - ARTInk, (1~ BInT),
where A and B are constants. In particular,
CS¥(T) becomes infinite as k, goes to zero. This
is identical for nearly ferromagnetic metals and is
due to the choice of band structure.

IV. CONCLUSION

It has been shown in Sec. II that band-structure
effects are critical in determining the excitation
spectrum of spin fluctuations in neraly antiferro-
magnetic metals. In particular, the choice of a
band structure with a “cusp” Kohn singularity has
the following advantages over band structures of
the Fedders-Martin type:

(i) A critical criterion for stability of an antifer-
romagnetic state at 7=0 is obtained using the “cusp”
model® (1= Vvy4,) in contrast to the Fedders-
Martin model. Critical criteria also are obtained
by using the band-structure models of Liu!! and
Jerome. '°

(ii) The model exhibits large-amplitude spin
fluctuations at zero temperature when 12 Vv, A,.
The frequency of such spin fluctuations vanishes
when the critical criterion (i) is satisfied.

(iii) Anomalous behavior in the electron specific
heat analogous to that of a nearly ferromagnetic
metal is a consequence of the “cusp” model. This
behavior is absent when a less-singular band struc-
ture is used, 810

The “cusp” model may also be used for the cal-
culation of the dispersion relation of spin waves in
Cr. The Fedders-Martin model gives a spin-wave
dispersion relation which is independent of the ex-
change coupling V at zero temperature.? A calcula-
tion using the “cusp” model should give a spin-
wave dispersion relation of the form

wy¥=D | q' ‘ ,
when the stiffness coefficient D vanishes at the
critical point, i.e.,

limD=0 as kyA,V-~1" . (30)
Work is in progress to determine D explicitly in
terms of the energy gap of the antiferromagnetic state.
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